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Abstract

Multiphase flows with droplets involving gas (air), liquid (droplets) and solid (ice) phases are examined
in this paper. The external multiphase flow is predicted in conjunction with a moving phase interface arising
from solidification of impinging supercooled droplets. A scalar transport form of the droplet flow equations
is solved separately from the viscous main (air) flow solver. This approach provides an effective alternative
to tracking of individual droplet trajectories in the freestream. Interactions between the droplet and main
(air) flows appear through appropriate inter-phase expressions in the momentum balance equations within
each individual phase. The numerical formulation is based on a CVFEM (Control-Volume-based Finite
Element Method) with quadrilateral isoparametric elements. This model is applied to problems involving
the formation of rime (dry) ice (i.e., without liquid film covering the ice surface). Experimental data pro-
vides further insight into the impingement of droplets on a cylindrical conductor. Favorable agreement
between the numerical and experimental results is achieved. � 2002 Elsevier Science Ltd. All rights re-
served.

1. Introduction

Droplet flows with phase change arise in many engineering applications, i.e., atmospheric icing
of structures and aircraft, spray deposition and splat-quenched solidification in manufacturing
and materials processing, combustion, etc. In particular, freezing precipitation can cause serious
damage to many types of structures, including overhead power transmission lines and telecom-
munication towers. In addition to major potential damage during severe storms (i.e., ice and wind
loads damaging structures and disrupting power supply), lighter icing occurs more frequently. In
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the case of power transmission, the accumulated ice shape may lead to large aerodynamic forces
on the power lines as a result of the streamlined resemblance between an iced conductor and an
aircraft wing. The resulting aerodynamic wind loads may then produce unstable flow-induced
vibrations (called galloping) with resulting forces much larger than forces arising from the ice
weight alone. Significant contributions in the understanding of these ice processes have been
reported by Lu et al. (1998), as well as others (i.e., Desai et al., 1996). Galloping has been long
recognized and discussed in relation to the design of power transmission systems (Fink and Beaty,
2000; ASCE, 1991; Nigol and Havard, 1978). In the present context, these scenarios have been
recognized in the design of power transmission systems at Manitoba Hydro, Canada.
In this paper, modelling of multiphase flow in three-phase conditions (air, droplets and ice

simultaneously) is considered. This involves the problem of tracking impinging droplets at the ice
surface. The ice accretion is affected by the rate at which the main (air) flow carries droplets onto
the ice surface. The impinging droplet flux can be integrated around the conductor in a mass
conservation balance to predict the ice growth rate (i.e., Goodwin et al., 1982). In rime (dry) ice
conditions, the supercooled droplets freeze immediately upon impact (Poots, 1996), whereas
droplet runback as a liquid film along the surface occurs in wet (glaze) ice conditions (Myers and
Hammond, 1999; Naterer et al., 1999). In both cases, predictions of the impinging droplets require
understanding of the external multiphase flow and its interaction with the moving ice interface
along the solid boundary. Inter-phase forces and mass exchange processes involving air and
droplets may be examined through appropriate time and spatial averaging of the continuum
equations (Banerjee and Chan, 1980; Tsuboi and Kimura, 1998). In this work, both numerical and
experimental results are examined for better understanding of rime ice processes.
A primary difficulty in this multiphase flow problem involves the prediction of the unknown

position of the ice–air interface during the simultaneous solutions of the droplet and main (air)
flow equations. A combined momentum integral and panel method has been used to predict the
external air flow field in the presence of ice accretion (Draganoiu et al., 1996). As droplets arrive
on the ice surface, the advancing interface must properly balance this incoming mass flux. In
practice, this balance requires special treatment of the phase interface advance once a control
volume along the ice surface is ‘filled’ (i.e., filled with incoming droplets and/or surface ice).
Conventional iterative techniques for moving boundary problems typically involve iterations in
terms of phase fraction, but in our case, the control volume on the accreting ice surface requires
an additional mechanism to prevent excess mass influx from ‘overfilling’ control volumes at the
edge of the ice–air interface. It is anticipated that convergence difficulties would be observed with
conventional iterative solutions of this problem. Furthermore, free surface models with deforming
grids likely would involve more complexity and computational effort than required in the current
problem. Other techniques, such as an apparent specific heat in solid–liquid phase change analysis
(Naterer and Schneider, 1995), alone do not directly solve the problem of droplet mass overfilling
in a control volume with subsequent accumulation in adjacent volumes due to the external droplet
flow. As a result, the development of innovative solution techniques is required for effective
modelling of multiphase flows involving air, droplets and a moving ice–air interface, simulta-
neously.
In the current work, a novel approach is presented to predict ice accretion on a conductor

under various environmental conditions. This three-phase approach (air, droplets and ice si-
multaneously) involves the main (air) flow and droplet equations, together with droplet impact
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and phase change on the ice surface, as modelled by a CVFEM (Control-Volume-based Finite
Element Method). This formulation is unique with respect to its ability to permit simultaneous
computations of ice accretion with deflection of external droplets due to the viscous main (air)
flow past the moving ice surface. These numerical predictions will be compared and assessed in
conjunction with experimental data involving ice weight and shape as observed in experiments
with a freezing rain simulator.

2. Problem formulation

The governing equations for multiphase flow with droplets may be obtained through spatial
averaging of the individual phase equations over a control volume containing a mixture of phases
(i.e., solid, liquid and air). Mathematical formulations for multiphase flows have been docu-
mented by various authors, including Banerjee and Chan (1980), as well as Lahey and Drew
(1979, 1993). In this Eulerian approach, a uniform spatial droplet distribution is assumed within
each control volume. Furthermore, spatially averaged approximations are adopted for cross-
phase processes, such as momentum and thermal interactions between the droplets and main (air)
flow. It will be shown that the conservation equations for this multiphase flow can be derived as
special cases of the following conservation equation for a general scalar quantity.

2.1. General scalar equation

Consider the transport of a scalar quantity, /k, associated with phase k in a control volume
containing a mixture of phases at a differential level (see Fig. 1). The conservation equation for /k

may be written as

oðqk/kÞ
ot

þ oðqk/kukÞ
ox

þ oðqk/kvkÞ
oy

þ
oðjk;xÞ
ox

þ
oðjk;yÞ
oy

¼ ŜSk: ð1Þ

In Eq. (1), the component terms represent the transient accumulation of /k in the control volume
occupied by phase k, the net advection flow of / across the phase k portion of the control surface
(second and third terms), the net diffusion flow into phase k across the interfacial surface (fourth
and fifth terms), and the source or sink of /k (i.e., the contributions due to evaporation, etc.) in

Fig. 1. Control volume with mixture of phases.
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the phase k portion of the control volume, respectively. The velocity of phase k, denoted by vk
(note: vectors have bold font), consists of scalar components in the x direction (uk) and y direction
(vk).
The interfacial balances are further described with reference to Fig. 1. The following symbols

are adopted: a refers to surface area (per unit volume), nx is the outward normal (x direction), jk
refers to the diffusive flux of the conserved quantity, Vk is the volume of phase k and vi denotes the
interface velocity. In order to derive the volume averaged form of the governing equation, Eq. (1),
the following Leibnitz and Gauss rules are required:

o

ot

Z
Vk

B dV ¼
Z
Vk

oB
ot

dV þ
Z
a
Bðvi � n̂nkÞ dS ðLeibnitzÞ; ð2Þ

Z
Vk

r � b dV ¼ o

ox

Z
Vk

n̂nx � b dV þ
Z
a
ðn̂nk � bÞ dS ðGaussÞ; ð3Þ

where B and b refer to arbitrary scalar and vector quantities, respectively.
A volume averaged form of Eq. (1) conveniently accommodates a control volume that contains

droplets having a spectrum of somewhat different diameters. Moreover, impinging droplets may
freeze along the ice surface (i.e., solid, liquid and air phases may occur simultaneously), thereby
making individual droplet tracking difficult. As a result, it is convenient to identify a volume
averaged quantity in the following manner:

hbki ¼
1

Vk

Z
Vk

bk dV : ð4Þ

Also, the phase volume fraction is defined as

Ck ¼
Vk
V
: ð5Þ

This volume fraction can be written in terms of a mass fraction through appropriate multipli-
cation by density.
The volume averaged form of Eq. (1) is obtained by integration of the governing equation over

Vk. Following this volume averaging of Eq. (1), together with Eqs. (2) and (3),

o

ot
Ckhqk/ki þ

o

ox
Ckhn̂nx � ðqk/kvk þ jkÞi þ

o

oy
Ckhn̂ny � ðqk/kvk þ jkÞi

þ 1

V

Z
a
ð _mm00

k/k þ jk � n̂nkÞ dS ¼ CkhŜSki: ð6Þ

The _mm00
k term refers to the inter-phase mass flux (units of mass per unit time and area). In Eq. (6),

special care is required in the interpretation of the area integration in the last term on the left-hand
side of this equation. The symbol

R
a refers to integration over the total area, including the in-

terfacial area per unit volume (i.e., ai along the boundary separating two distinct phases within the
control volume), and any area of phase k in contact with the external walls, aw, or boundaries of
the system (per unit volume). Typically, the _mm00

k term becomes zero upon evaluation along the walls
due to zero velocity conditions there. However, for the interfacial part of the surface integration,
this _mm00

k term may involve evaporation or coalescence effects (mass equation) or force implications
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(momentum equations). In any event, the area integration involves a sum including aw and ai and
consideration of both components is important in the subsequent derivation of the individual
conservation equations.
The general scalar transport equation can now be applied to multiphase flows with droplets.

However, before the resulting equations of motion are examined, consider the various approaches
(benefits and disadvantages) in handling multiphase problems. In multiphase flows with droplets
and phase change, there are three main types of methods to predict the main and droplet flows: (i)
mixture model, (ii) tracking of individual droplet trajectories and (iii) three-phase (Eulerian)
model. In the mixture approach, the droplet and air phases are treated as a homogeneous mixture
within a discrete (or differential) control volume. In this way, a single velocity is sought which
represents the mean velocity of the droplet and air mixture. This approach is widely adopted in
other two-phase problems, most notably problems involving solid–liquid phase change, since the
velocity in one phase is well known (i.e., stationary solid phase), so the other phase velocity can be
readily determined from the mixture velocity. However, in multiphase flows with droplets, this
type of approach is limited in the sense that it is usually difficult to subdivide the components of
mixture velocity into their respective phases.
In the second (Lagrangian) approach, individual droplet trajectories are tracked through the

flow field. A force balance is used on each individual droplet, together with an appropriate em-
pirical estimate of the drag coefficients, to find the resulting droplet acceleration (and thus velocity
through time integration). In addition to the complexity of tracking very many droplets, this
approach is also difficult to implement into existing computer codes involving a fixed domain and
mixture quantities located at the nodes of a finite element/volume mesh.
In an Eulerian approach, the droplet and air phases are individually averaged spatially

throughout the control volume and the resulting transport equations are solved for these indi-
vidual phase equations. Interactions between the phases are handled through appropriate phase
interaction terms, such as spatially averaged force interactions between the air and droplet phases
in the momentum equations. In this way, the benefits of the mixture model (reduced computa-
tional time) and droplet tracking approach (capturing inter-phase interactions) can be effectively
retained, while providing a framework for implementation into existing fixed domain codes. In
particular, the three-phase approach allows the droplet flow equations to be written in a standard
scalar transport form in conjunction with gas (air), liquid (droplet) and solid phases (moving ice
interface) simultaneously.

2.2. Mass equation

In this case, set /k ¼ 1; jk ¼ 0 and ŜSk ¼ 0 in Eq. (6) to obtain the following result:

o

ot
Ckhqki þ

o

ox
Ckhqkuki þ

o

oy
Ckhqkvki þ h _mm00

kii ¼ 0; ð7Þ

where the subscript i refers to evaluation across the interfacial area of the control volume. In
general, the volume averaged, interfacial mass flux of droplets arises from evaporation, etc. It is
typically not well known so a suitable correlation must be supplied. The subscript k refers to phase
k, and in the case of the liquid phase, uk refers to an effective (spatially averaged) droplet velocity
in the x direction.

G.F. Naterer / International Journal of Multiphase Flow 28 (2002) 451–477 455



Now q̂ql is defined as a mass of water (droplets) per unit volume of the water–air mixture, where

q̂ql ¼
ml

V
¼ Ckhqki: ð8Þ

Alternatively, q̂qk is called the liquid water content; it is analogous to the concept of humidity except
that it includes discrete droplets rather than a continuous mixture of moisture in the air. The hat
notation in Eq. (8) is used to distinguish liquid density (i.e., density of liquid water is 1000 kg=m3)
from the concept of liquid water content, which refers to the mass of liquid phase (droplets) in a
control volume occupied by both liquid and air. The subscript is still relevant since it refers to the
content of liquid (rather than air) in the multiphase control volume.
Combining Eqs. (7) and (8) for the liquid (droplet) phase:

oq̂ql

ot
þ oðq̂qlulÞ

ox
þ oðq̂qlvlÞ

oy
þ h _mm00

l ii ¼ 0: ð9Þ

Droplet evaporation and coalescence, which are represented by _mm00
l in Eq. (9), are assumed to be

small in comparison to the other mass inflow/outflow terms. Also, the processes of evaporation
and coalescence are indirectly incorporated since an equivalent droplet mass is approximated
within the specified mean droplet diameter. Details involving spatial averaging in the derivation of
Eq. (9) are shown by Tsuboi and Kimura (1998) for similar conditions in incompressible droplet
flows. It can be observed that the form of Eq. (9) is similar to the regular continuity equation. It
may be considered in an analogous way as a species transport equation, whereby the ‘concen-
tration’ of droplets (or phase fraction) is tracked throughout the flow field.
The volume fraction, Cl, can be calculated in terms of q̂ql following multiplication by ql (or qw;

the density of water). As a result, the governing equation can be divided by ql to obtain a
transport equation for the volume fraction of droplets occupying a droplet–air control volume.
An additional phase fraction, k, can also be introduced to distinguish liquid and solid phases
when droplet freezing (or ice melting) occurs along the ice surface.
It can be observed that the average of a product in Eq. (7), given by hqkuki, has been trans-

formed to a product of averaged quantities in Eq. (9). In order to perform this transformation, a
distribution coefficient for the product of qk and a general scalar quantity, /k, is defined as fol-
lows:

vk ¼
hqk/ki
hqkih/ki

: ð10Þ

In multiphase flows involving a dispersed phase (i.e., droplets dispersed uniformly within air
flow), it is generally assumed that the phase density variations within the averaging volume are
sufficiently small so that the distribution coefficient is approximately equal to one (Banerjee and
Chan, 1980). Very little or no data involving distribution coefficients for multiphase flows in the
present context is available in the technical literature, and so setting these coefficients to one is
often practised (Banerjee and Chan, 1980). Furthermore, these coefficients have been predicted
theoretically as vk 
 1 under most practical circumstances by using power low profiles for the flow
quantities (Bankoff, 1960). As a result, the separation of variables into a product of averaged
quantities is adopted in Eq. (9), as well as similar transformations in the following momentum
equations.
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2.3. Momentum equations

In this case, set /k ¼ vk; jk ¼ pkI� sk, and ŜSk ¼ Gk, where I; sk and Gk refer to the identity
matrix, stress tensor and body and/or inter-phase forces, respectively. Also, the component of the
resulting equation (6) in the x direction is obtained by taking the dot product of this equation with
the unit x direction vector, n̂nx. For example, the convective and pressure terms of the x direction
momentum equation are transformed by

nx �
o

ox
Ckhnx � ðqkvkvkÞi ¼ nx �

o

ox
Ckhqkukvki ¼

o

ox
Ckhqku

2
ki; ð11Þ

nx �
o

ox
Ckhnx � pkIi ¼

o

ox
Ckhpki ð12Þ

since I � nx ¼ nx and nx � nx ¼ 1. Similar operations are performed on the stress tensor terms ob-
tained in Eq. (6). Furthermore, the right-hand side of Eq. (6) involves the cross-phase interactions
of pressure and shear stress at the interfacial portion of the boundary, which is modelled through
a term denoted by Gx;k.
After each term is assembled into Eq. (6)

o

ot
Ckhqkuki þ

o

ox
Ckhqku

2
ki

h
þ qkhn̂nx � ðsk � n̂nxÞi

i
þ o

oy
Ckhqkukvki
h

þ qkhn̂nx � ðsk � n̂nkÞi
i

¼ � o

ox
Ckhpki �

1

V

Z
a
f _mmkuk þ n̂nx � ðn̂nkpkÞ � n̂nx � ðn̂nk � skÞg dS þ CkhGx;ki: ð13Þ

Similar equations for the momentum equations in the y and z directions are obtained by taking
the dot product with respect to n̂ny and n̂nz, respectively.
The phase interaction forces are typically combined with other interfacial forces, such as the sk

terms, using some form of resistance law for the droplets. The following interfacial expression can
be adopted (Hewitt et al., 1997):

Gx;k ¼
18la

d2
cdRel
24

ðua � ulÞ; ð14Þ

where Rel ¼ qgjua � uljd=la is the droplet’s Reynolds number (based on the relative velocity) and
d is the mean droplet diameter in the flow. Other researchers (i.e., Tsuboi and Kimura, 1998) have
modified the resistance force between the air and droplet streams such that it becomes propor-
tional to the velocity difference (between air and droplet) raised to an exponent c (empirical
factor), rather than the difference alone. It may be shown that as the droplet inertia increases, its
trajectory is less altered by the air flow near the ice surface. In the current approach, the ex-
ponentiated resistance force term leads to this anticipated trend in the droplet flow dynamics.
Assuming a spherical shape for each droplet, the following curve fit may be used for the drag

coefficient (Szilder et al., 1987):

cd ¼
24

Rel
þ 4:73

Re0:37l

þ 0:00624Re0:38l : ð15Þ

Although this correlation is adopted over the entire range of Reynolds numbers, it is generally
considered to be valid up to Rel ¼ 3� 105, which is well within the range of the current droplet
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flows since Rel is based on the relative velocity, not the absolute velocity. Eqs. (14) and (15) are
not adopted in the usual fashion in control volumes along the moving boundary (ice–air), since
the solid fraction there reduces the effective volume which encompasses the air/droplet interac-
tions. It is assumed that the droplets remain dispersed until they reach the ice interface, since in
the present study, rime (dry) ice is assumed such that droplets adhere immediately upon impact,
without splashing off the surface. Only the force within the air/droplet portion of the control
volume is incorporated since the inter-phase resistance term (right-hand side of Eq. (13)) involves
the phase fraction (in Ck) multiplied by Gx;k. As a result, the force between air/droplets is included
in the non-ice portion of the control volume, and a zero force (due to zero velocities) arises in the
solid (ice) portion of the control volume.
The droplet flow is sustained mainly by forces imparted on each droplet from the main (air)

flow, rather than by internal pressure gradients within the droplet. The main forces are handled
through the above resistance law (note: in addition to gravitational forces for the y direction
equation). As a result, in the liquid (droplet) phase,

oðq̂qlulÞ
ot

þ oðq̂qlululÞ
ox

þ oðq̂qlulvlÞ
oy

þ h _mm00
l uli ¼ ClhGx;li ð16Þ

can be derived in a manner similar to that of Eq. (9). Further specific details involving spatial
averaging are described by Tsuboi and Kimura (1998), as well as Banerjee and Chan (1980), under
similar conditions for multiphase flows.
For the y direction momentum equation, an additional gravity term appears in the negative y

direction for the corresponding form of Eq. (16). In this way, a droplet falls under its own weight.
Also, the pressure gradient term appears in the corresponding Navier–Stokes equations for the
main (air) flow. In particular, Eq. (16) is obtained for the liquid (droplet) phase, whereas sub-
stitution of the phase subscript (k) as the gas (air) phase yields the main (air) flow equations. After
q̂ql (or Cl) are obtained from a computational solution of Eq. (9), then Eq. (16) and an analogous y
direction equation are solved in conjunction with suitable inter-equation iterations to give the
components of droplet velocities, ul and vl.

2.4. Energy equation

In the case of heat transfer, let ek ¼ /k ¼ êek þ 1
2
vk � vk (total energy), jk ¼ qk þ ðpkI� skÞ � vk

(Fourier heat flux and work contributions arising from pressure and viscous forces) and
ŜSk ¼ Fb;k � vk þ ŜSk;e (work contributions arising from body forces, such as gravity, and heat gen-
erated per unit volume). In this way, heat transfer between the droplets and air stream can be
predicted. However, the present work assumes that the droplet temperature matches the air
temperature in the freestream and then changes to the phase change temperature upon impact and
solidification on the ice surface. The phase change temperature can vary, depending on ambient
conditions such as the freestream pressure. The current type of ice formation is called rime (dry)
ice and it typically occurs at ambient temperatures below about )5 �C (Poots, 1996) in structural
icing problems. However, transition from rime ice to glaze ice typically occurs at much lower
temperatures (i.e., aircraft icing).
The following list summarizes the governing equations to be solved for multiphase flow with

incoming droplets at the ice surface:
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• Eq. (9) for the volume fraction (or mass fraction) of droplets,
• Eq. (16) and corresponding Navier–Stokes equations for droplet and air velocity fields, respec-
tively.

In the following section, the numerical approximation of these governing equations will be
described.

3. Numerical formulation

Since analytical solutions of the previously described multiphase flow equations are generally
not available, a numerical solution is often required. This numerical solution involves discreti-
zation of the problem domain, as well as the previously described governing equations. In this
section, the method of spatial discretization based on a CVFEM is presented. The CVFEM
combines the geometric flexibility of the finite element method with the important conservation
based properties (i.e., enforcement of mass, energy conservation) of the finite volume procedure.

3.1. Discretization of solution domain

The solution domain is subdivided into an assembly of isoparametric quadrilateral elements.
Each finite element is further subdivided into a set of sub-control-volumes (SCVs). Then, after
assembly of all elements, a finite volume is established by all sub-volumes associated with a
particular node (see Fig. 2). Local coordinates, s and t, are used within each element and inte-
gration points (ips) are defined at the midpoint of each sub-surface (SS) for evaluation of surface
flux terms, such as the mass flux, in the control volume equations.
Then, bilinear shape functions are used for global to local coordinate transformations and

interpolation of scalar values in the domain. For example, the value of a general scalar quantity,
/, at the local coordinate, ðs; tÞ, is approximated by

Fig. 2. Finite element-volume discretization.
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/ðs; tÞ ¼
X4
i¼1

Niðs; tÞUi; ð17Þ

where the shape functions, Ni, are given by

N1ðs; tÞ ¼
1

4
ð1þ sÞð1þ tÞ; ð18Þ

N2ðs; tÞ ¼
1

4
ð1� sÞð1þ tÞ; ð19Þ

N3ðs; tÞ ¼
1

4
ð1� sÞð1� tÞ; ð20Þ

N4ðs; tÞ ¼
1

4
ð1þ sÞð1� tÞ; ð21Þ

and the subscripts i ¼ 1; 2; 3 and 4 refer to local nodes. It should be noted that t refers to the local
coordinate only in Eqs. (17)–(21); otherwise (everywhere else in this paper), it refers to time.

3.2. Control volume equations

In addition to spatial discretization of the problem domain, a suitable discretization of the
multiphase flow equations must be provided. This discretization is based on earlier numerical
formulations involving fluid flow and phase change heat transfer (i.e., Naterer and Schneider,
1995). Various approaches have been developed for the numerical analysis of multiphase flows
with droplets; these developments have largely arisen from applications such as droplet com-
bustion and chemically reacting flows. In many cases, the main issues in such applications deal
with interactions between the droplet flow and the surrounding flow field. For example, turbu-
lence in the freestream affects the mixing and reaction rates of droplets in an internal combustion
engine. Consequently, computational models then typically involve detailed droplet tracking al-
gorithms to predict the sub-grid heat transfer rates due to droplet evaporation and combustion.
However, in the current work, an important focus is accumulation and solidification of impinging
droplets on the contact surface, with less emphasis on the droplet–gas interaction in the free-
stream. As a result, an alternative model that is based on an Eulerian formulation is considered
here. In addition to retaining effective modelling in the freestream, it is anticipated that compu-
tational demands, which essentially arise from various features of conventional fine-scale droplet
tracking, may be reduced.
The discrete form of the governing equations may be obtained by integration of the conser-

vation equation, Eq. (1), over a discrete volume, with the result thatZ
A

oðqk/kÞ
ot

dAþ
Z
S
ðqk/kvkÞ � dnþ

Z
S
ðjkÞ � dn ¼

Z
A
ŜSk dA; ð22Þ

where A and S refer to the area of the shaded region in Fig. 2 and surface length traversed around
the outer edge of this area, respectively (note: A and S become volume and surface area in 3-D
problems).
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An implicit formulation is adopted here; in other words, convection, diffusion and source terms
in Eq. (22) are evaluated at the current time level rather than a previous time level in an explicit
approach. In this way, larger time steps can be taken in the simulations while retaining numerical
stability, thereby reaching a fixed point in time with reduced computational effort (in comparison
to explicit scheme). In view of the complicated interaction between the droplet flow, continuity
and multiphase momentum equations in the present formulation, the ability to reliably obtain
converged results at each time step in a cost effective manner was an important motivation in
adopting an implicit formulation.
With reference to SCV1, a backward difference in time is adopted for the approximation of the

first term in Eq. (22), i.e.,Z
SCV1

oðqk/kÞ
ot

dA 
 J1
ðqkUkÞnþ11 � ðqkUkÞn1

Dt

" #
; ð23Þ

where J1 refers to Jacobian (i.e., area of SCV1). Also, the subscript 1 and superscript n refer to
local node 1 and previous time level, respectively. In Eq. (23), the upper case U refers to a value
calculated at the node of a finite element, whereas the lower case / would mean that the value is
computed internally within the element (i.e., at the integration point). For example, u would refer
to evaluation at the integration point, whereas U refers to nodal velocity (see Fig. 2 for illustration
showing integration point and nodal locations).
A similar lumped approximation is adopted for the source (right-hand side) term in Eq. (22),Z

SCV1

ŜSk dA 
 J1ðŜSkÞ1=2;1=2; ð24Þ

where the 1/2, 1/2 subscript refers to the local coordinate position (i.e., center of SCV1).
The convective term in Eq. (22) requires evaluation at both SS1 and SS4 sub-surfaces since both

surfaces contribute to the convective transport of / in the SCV1 conservation equation. In the
case of the SS1 evaluationZ

SS1

ðqk/kvkÞ � dn 
 ðqk/kukÞip1Dy1 � ðqk/kvkÞip1Dx1: ð25Þ

A similar expression is obtained for the SS4 integration. Since an implicit formulation is used,
inter-equation iterations (involving conservation equations for mass, momentum, etc.) are re-
quired to handle the non-linear convection term in Eq. (25). For example, in the momentum
equation, the convective terms in Eq. (25) involve a convected velocity (a linearized or lagged
velocity) multiplied by a convecting velocity (active velocity obtained through integration point
equations). Iterative updates are required following each solution of the linearized flow equations
until suitable convergence is achieved between both velocities.
The diffusive term is evaluated at both SS1 and SS4 surfaces. In the SS1 approximationZ

S
ðjkÞ � dn 
 jk;xjip1Dy1 � jk;y jip1Dx1; ð26Þ

where the midpoint approximation has been adopted again. The flux term, jk, can be related to the
scalar variable, /k, through a suitable phenomenological law. For example, in the case of energy
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conservation, it represents the Fourier heat flux, and so the resulting diffusive term can be ap-
proximated asZ

S
ðjkÞ � dn 
 �j

X4
i¼1

oNi

ox
Ti

 !
Dy1 þ j

X4
i¼1

oNi

oy
Ti

 !
Dx1; ð27Þ

where j refers to thermal conductivity.
After Eqs. (23)–(26) are substituted into Eq. (22), an equation involving nodal and integration

point values of / (such as velocity), as well as integration point velocities (to be determined), is
obtained. However, in reference to Fig. 2, these terms only represent the SCV1 portion of the
entire control volume. The full control volume equation, Eq. (22), is completed after all elements
are assembled since the sub-volume contributions to a conservation equation for a particular
global node are completed after all elements are considered. In a computer program, a loop would
be carried out over all finite elements, and within this loop, all component terms from Eqs. (23)–
(26) would be evaluated at each sub-surface (another inner loop). These terms are added to the
appropriate row and column of the global matrix which corresponds to the node of that particular
SCV. The leading coefficients in front of / (convection and diffusion terms) are stored in the
global matrix since an implicit method is adopted, and the transient and source term parts of
Eq. (22) are stored on the right-hand side. This procedure yields a banded matrix of equations to
be solved for the nodal unknowns.
However, during this assembly of convection terms into Eq. (22), integration point values such

as integration point velocities, uk;ip1 and vk;ip1, still must be related to nodal variables, such as
Uk;1; Vk;1 and Pk;1, in order to provide a well-posed algebraic system. Conventional schemes, such
as UDS (Upwind Differencing) or CDS (Central Differencing), often lack a complete coupling
between problem variables at the integration point. As a result, an alternative scheme (PINS, or
Physical INfluence Scheme) is adopted here at an integration point level for multiphase flows.

3.3. Integration point equations

In the current PINS approach, the integration point values are determined from a local balance
of transport processes at that location and related to entropy principles (Naterer, 1999). In
particular, the integration point velocity components (air and droplets separately) are obtained
from the transport forms of the momentum equations, corresponding to Eq. (22). For the main
(air) flow in the x and y directions, respectively,

q
ou
ot

þ qu
ou
ox

þ qv
ou
oy

¼ � op
ox

þ l
o2u
ox2



þ o2u

oy2

�
þ ŜSx; ð28Þ
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þ o2v
oy2

�
� qg þ ŜSy; ð29Þ

where u; v; p; l;q and g refer to x direction velocity (air), y direction velocity, pressure, dynamic
viscosity, air density and gravitational acceleration, respectively. The source terms, ŜSx and ŜSy , in
these equations refer to inter-phase forces, particularly interactions between the droplet and air
streams.
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It can be observed that the integration point equations involve the following five distinct op-
erators: transient (1st term), convection (2nd and 3rd terms), pressure (4th term), diffusion (5th
and 6th terms) and source terms (7th term). The solutions for the integration point velocity
components are obtained by a suitable discrete approximation of each of these operators. These
operators (in order) are approximated by a backward difference in time (transient), upstream
differencing (convection), bilinear interpolation of nodal values (pressure), central differencing
(diffusion) and bilinear interpolation (sources/sinks) (Naterer, 1999).
Based on these operators, the following discrete approximation of Eq. (28) at an integration

point (subscript ip) is obtained:

unþ1ip � unip
Dt

þ qV
unþ1ip � unþ1u

Lc

 !
¼ �

X4
j¼1

oNj

ox
Pnþ1
j þ l

L2d

X4
j¼1

NjUnþ1
j

 
� unþ1ip

!
þ ŜSnþ1x ; ð30Þ

where the diffusion length scale is given by

L2d ¼
2

Dx2



þ 8

3Dy2

��1

: ð31Þ

In Eq. (30), the superscripts nþ 1 and n refer to current and previous time levels, respectively. The
convection operator has been approximated by a skewed upwind difference (i.e., upwinding to
edge of element based on local flow direction). Also, V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
;Lc and uu represent the fluid

velocity magnitude, convection length scale (distance to upwind edge) and upwind value of u,
respectively. The direction of the line between the integration point and upwind value of u is
defined by the local velocity components about these locations. Although Eq. (30) is given in the x
direction, a similar result is obtained for the y direction integration point equation.
Following this substitution of discrete operators into Eqs. (28) and (29), a local matrix in-

version is required to express the four integration point values (per element) in terms of nodal
values alone. These inverted matrices provide the coupling between integration point and nodal
point values. They are adopted in the control volume equations to evaluate the sub-surface
convection terms and thus complete the closure of the discrete equations. In other words, a
discrete approximation of the governing differential equations is solved at each integration point
to give an accurate representation of the convected quantities in Eq. (22). This approximation is
solved for the main unknown, integration point velocity, in terms of nodal values of velocity and
pressure.
The dependence between integration point and nodal point variables is expressed through in-

fluence coefficients, which are similar to the leading coefficients of temperature due to interpolation
alone in the diffusive terms, i.e., Eq. (27). Once the integration point velocities are substituted into
Eq. (25) and subsequently Eq. (22), the convective flux terms are completed for a particular sub-
surface. Then, similar calculations are performed at the other sub-surfaces to complete the con-
tributions of convection for each of the four sub-control-volumes within an element.
A set of simultaneous equations for pressure, p, and velocity, v, is obtained in Eq. (22) in the

mass and momentum equations since the substituted integration point velocities depend on both
velocity and pressure. For example, in the continuity equation, pressure appears through the
dependence of integration point velocity on pressure in Eq. (22). Similarly, pressure appears in
the momentum equations through both convective and pressure gradient terms. As a result, once
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the control volume equations are solved simultaneously, the pressure distribution throughout the
flow field is predicted. Iterations are typically carried out until convergence between the convected
velocity (solution of momentum equation) and convecting velocity (integration point, mass
conserving velocity) is achieved.
In addition to integration point equations for the main (air) flow, similar equations are solved

for the droplet flow. The droplet velocities are particularly important in terms of the mass influx
of droplets into control volumes located along the moving gas/solid interface. The following x
direction transport equation for droplets is based on the momentum equation in the liquid
(droplet) phase, Eq. (16), i.e.,

q̂ql
oul
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þ q̂qlul
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þ q̂qlvl
oul
oy

þ h _mm00ulii ¼ ClhGx;li: ð32Þ

The resistance term may be expressed by Eq. (14) from which the following quasi-steady ap-
proximation of the droplet equation is obtained:
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24=Re
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where c is the empirical resistance term exponent (based on Hewitt et al., 1997). The term in-
volving evaporation and coalescence (last term in Eq. (32) on left-hand side) is neglected due to its
assumed small contribution in comparison to droplet inertia. Although the transient term is not
included in Eq. (33), the full coupling with the control volume flow equations provides a temporal
variation of the flow field and ice buildup. Also, it should be noted that the present formulation
assumes that the incoming droplet velocities at the inflow boundary remain uniform in time.

4. Numerical procedures

In addition to the previously described numerical discretization, other steps must be taken in
the numerical algorithm to provide effective performance. These additional steps involve the
moving phase interface(s). Solidification of incoming supercooled droplets will change the sur-
face’s shape due to the resulting ice accretion. Moving boundary problems, such as this ice phase
change problem, involve a discrete change of the phase interface position at each time step. Grid
transformations to accommodate this moving boundary generally entail difficulties such as in-
terpolation of scalar values from the previous grid to new nodal locations on the updated grid.
Furthermore, grid and coordinate transformations are time-consuming and difficult to incorpo-
rate into conventional CFD codes using a fixed domain. As a result, it is worthwhile to consider
an alternative, fixed domain algorithm capable of handling the droplet dynamics, as well as the
growing ice surface once droplets have been deposited on the surface.
In the current approach, the droplet content or distribution in the flow field is modelled

through the scalar transport equation for the droplet’s liquid (water) content. In a control volume
along a solid wall or ice surface, the droplet flow is altered due to the presence of the surface.
Furthermore, freezing of the impinging droplets upon impact increases the solid fraction of the
volume (potentially consisting of air, liquid and solid ice). If a sufficiently large mass influx leads
to a filled control volume (i.e., filled with water and/or ice), then the air flow no longer passes
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through this occupied volume and the edge of the ice interface moves into an adjacent control
volume. In this way, the liquid fraction within a volume, as well as the surface location itself, are
both used to identify the location of the moving ice surface.
At the solid (ice) surface, incoming droplets can accumulate until the control volume at the

surface becomes filled. Beyond this point, the water (liquid and/or solid) fraction becomes one and
the advective term in the scalar transport equation is reduced to zero for this filled volume. The
position of the ice interface is identified now by the adjacent volume containing a liquid fraction
between 0 and 1. As a control volume changes phase from partially filled to completely filled, the
amount of droplet influx into the partially filled volume may exceed the volume available. As a
result, the volume becomes filled and the excess amount is transferred to the adjacent control
volume for proper mass conservation. The phase fraction is a bounded scalar (between 0 and 1)
and so a droplet influx into a nearly filled volume must not surpass this bound.
As the interface moves from one volume to an adjacent volume, the excess mass (‘overfilled’

amount) from the former control volume is implicitly added to the adjacent volume once the
phase change is effected in the following iteration (or time step). In this way, mass conservation is
achieved. However, another difficulty is realized if the ice (solid–air) interface moves more than
two control volumes (or elements) away from its present position because a direct connection
between nodes is no longer apparent. In this instance, a time step limitation is required for nu-
merical stability. However, this limitation is generally much less stringent than conventional time
step limitations, such as the CFL condition (Anderson et al., 1984), as a result of the typically
small liquid water content (i.e., large time to fill a control volume). Furthermore, in practice, a
reduced time step may provide a more efficient solution advance than multiple iterations within a
larger time step, due to the interactions with other non-linearities, including convection, phase
change and droplet impingement.
Before the control volume is filled, the complete mass inflow and outflow terms are applied

(based on conservation of mass in air and liquid phases). However, once the control volume
becomes filled, the mass inflow is reduced. In particular, as the phase fraction (i.e., water and/or
ice) approaches one, the mass inflow term is reduced to zero through multiplication by a phase
fraction weighted scaling factor. Although this process is already included in the thermal and fluid
physics, numerical iterations are generally required to achieve proper convergence. Thus the inter-
equation coupling is strengthened by this weighting factor without a loss of generality. Since the
scaling factor remains as one throughout the flow period but abruptly falls to zero once the liquid
fraction becomes one, it maintains the regular flow equations until the control volume is filled.
After the control volume is filled with liquid from the droplets, the computational effort is reduced
as a result of the de-coupling in the discrete equations. In this procedure, a zero air flow velocity is
properly predicted in the ice.
The finite element framework of the numerical formulation provides the geometric flexibility of

the simulations. An unstructured mesh is utilized, in contrast to conventional finite volumes,
which are typically based on structured grids involving a row/column format. Also, the discrete
equations are developed in isolation and independent of the mesh configuration. The usual type of
finite element assembly rules are used to re-construct the whole domain from its parts (elements).
Furthermore, the computer algorithm is based on standard finite element procedures, with the
exception that local stiffness equations are based on control volume balances, rather than other
conventional techniques such as Galerkin weighted residuals.
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5. Experimental apparatus and procedures

Experiments involving aerodynamic measurements with iced cables (Stumpf and Ng, 1990) and
freezing precipitation (Lu et al., 1998) have been performed at the University of Manitoba. The
outdoor freezing simulator includes spray nozzles, a fan and a short horizontal conductor placed
perpendicular to the airstream produced by the fan. Droplets are sprayed onto the sample from a
set of spray nozzles supplied with pre-cooled water. In the currently illustrated data, these nozzles
supplied droplets with a mean volume diameter of about 1 mm. By placing the freezing rain
simulator in an outdoor space surrounded by several buildings, interference from the ambient
wind was reduced. An anemometer was used to measure the air speed produced by the fan and
a weight scale and microscope were used to measure the size spectrum of the water droplets.
Furthermore, the vertical and horizontal components of precipitation were measured with two
precipitators.
Although the droplet temperatures needed to stay slightly above 0 �C at the nozzle exit to

prevent freezing within the supply tubes, efforts were taken to supercool the water further by
spraying the droplets about 10 m high prior to their falling onto a conductor sample. In this way,
the travel distance of the droplets was viewed to be sufficient to allow the droplets to match the
ambient air temperature closely. The mass of ice accretion was recorded at different times through
a plaster cast sample replicated from the ice shape, and later traced out to estimate an area (and
thus mass) around the conductor. Alternatively, by placing the sample in a liquid container and
measuring the resulting displaced liquid volume, the resulting volume could be converted to an
equivalent mass. Based on tests involving comparisons between stranded cables and smooth
cylinders, it was observed that the effects of a conductor’s stranding on the ice shape and weight
seemed minor.
The experimental uncertainties in these tests were largely due to the measurement of precipi-

tation rate. Measurements of vertical and horizontal components of precipitation, as well as air
speed and air temperature, were recorded at half hourly intervals. The liquid water content was
not measured directly, but rather, it was computed through the measured precipitation rate and
wind velocity. By performing comparable experiments over shorter time intervals, it was esti-
mated that the maximum error in the measured precipitation rate (and thus liquid water content)
was about �10%. Furthermore, the measurement accuracy involving ice thickness was limited by
some three-dimensional icing variations along the cable. Additional comparisons with actual ice
samples from a power line after a freezing rain storm indicate that the experimental simulations
possessed comparable characteristics in comparison to the actual iced cables. As a result, it is
anticipated that the experimental results provide good representation of actual power line icing in
outdoor conditions.

6. Results and discussion

6.1. Impinging droplets on planar surface

An example problem involving a one-dimensional droplet flow is considered here for basic
validation of the droplet flow formulation. It may be viewed as droplets falling at their terminal
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velocity in quiescent air (see Fig. 3). Alternatively, it may be considered as droplets flowing in a
horizontal direction (x direction) and impacting on a wall. In rime (dry) ice conditions, droplet
freezing occurs immediately upon impact. Consider droplets initially located at x ¼ 0 (dimen-
sionless), and moving toward a wall (x ¼ X ) at a uniform velocity, u. An analytical solution for
the interface position, k, in terms of time, t, droplet velocity, u, and volume fraction of droplets in
air, Cl, can be shown to be

k ¼ X � t



� X
u

�
uCl; tP

X
u
: ð34Þ

Physically, the rate of mass accumulation on the ice surface balances the rate of incoming mass
flow onto the ice surface. The time duration before droplets arrive at the surface is X=u and the
interface only begins to grow after this time. It is assumed that air motion is not altered at the
moving ice interface (horizontal orientation), or alternatively, the droplets fall at their terminal
velocity in quiescent air (vertical orientation).
A demonstration of some basic features of the formulation may be observed through the

discretization of the following 1-D form of the droplet equation

oCl

ot
þ o

ox
uClð Þ ¼ 0; ð35Þ

where Cl refers to the volume fraction of droplets in air. Discretizing Eq. (35), based on a
backward difference in time, together with direct upwinding,

Cnþ1
l;i � Cn

l;i

Dt

 !
Dxþ giuiCl;ið Þ � gi�1ui�1Cl;i�1ð Þ ¼ 0; ð36Þ

where the subscripts i� 1 and i refer to the upstream node and the node centered within the
control volume, respectively. Also, the superscript n refers to the previous time level.
A mass weighting factor, g, is adopted for damping the mass influx into a filled control volume,

where

g ¼ 2� 2

1þ k0:1
: ð37Þ

The use of this weighting factor is not intended to arbitrarily re-distribute mass along the phase
interface. Instead, it is intended to serve as a technique of numerically blocking out any additional

Fig. 3. Schematic of 1-D droplet impingement problem.
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droplet mass flow into an already filled control volume. In this way, it represents a step function to
only permit a maximum amount of mass into the control volume. Otherwise, a mass ‘overflow’
would need to be re-distributed to surrounding control volumes, which would defeat the purpose
of the overall three-phase approach, since interface tracking in the adjacent control volumes
would need to be pursued. Once the droplet influx fills the control volume along the moving
boundary, g rises abruptly to retain the excess mass within the control volume from where the
droplets arrived. Inter-equation iterations are performed to ensure that the mass retained by the
control volume adjacent to the filled volume along the phase boundary balances the mass ex-
cluded from the filled control volume. It can be observed that g ! 0 abruptly when the control
volume is filled (k ! 1). In this way, the inter-equation stability involving the droplet and air flow
equations is also improved. Thus, the use of g represents a novel new technique for conservation
of mass within the framework of a fixed grid, three-phase methodology. Furthermore, a dis-
tinction between droplet fraction in an air–droplet control volume (denoted by Cl) and liquid
fraction in a solid–liquid control volume is established in the event of extending this formulation
to glaze ice conditions.
In Eq. (36), an implicit solution of the resulting algebraic equations may be readily obtained.

For illustration purposes, consider a four-node discretization, i.e.,

Cl;1 ¼ Cl;in; ð38Þ

Cl;2 ¼
Cn
l;2 þ Cl;ing2Co

1þ g3Co
; ð39Þ

Cl;3 ¼
Cn
l;3

1þ g4Co
þ

g3CoðC0
l;2 þ Cl;ing2CoÞ

ð1þ g4CoÞð1þ g3CoÞ
¼ Cl;4; ð40Þ

where Co ¼ uDt=Dx refers to the Courant number and Cl;in is a specified value at the boundary
inlet. The first equation for node 1 represents a boundary (inflow) condition. Also, as more nodes
are considered, the anticipated pattern of subsequent nodal Cl values can be observed from Eqs.
(39) and (40). A preliminary investigation of this solution (i.e., selecting sample values of Dx, etc.)
shows that the control volumes become successively filled (Cl ! 1) over time as expected. In this
approach, a situation may arise where a fine grid resolution near the boundary may initiate an
interface advance beyond 2–3 control volumes in a single time step and iteration. In this situation,
convergence difficulties may be avoided by reducing the time step size. In the above example, the
recommended condition is Cl;inuDt=Dx < 1. This condition resembles the conventional CFD
stability criterion for explicit schemes (i.e., Co � uDt=Dx < 1), but it is generally much less re-
strictive, since the liquid water content in the flow field is generally much less than unity (i.e.,
Cl;in � 1).
The previous analysis has considered a coarse grid (i.e., three nodes plus fourth node at wall) to

show some overall algorithm features. At this stage, a more suitable grid refinement will be ex-
amined (i.e., 4� 10, 4� 15 and 4� 20 elements). In Fig. 4(a) and (b), results are displayed for the
ice interface movement over time, with a focus on sensitivity to time step and grid spacing. The
interface movement is delayed (see upper left portion of graph where position remains at 1) since
some time must elapse prior to the initial impact of the freestream droplets on the surface. After
this instant, it can be observed that the predictions come within close agreement with the solution
given in Eq. (34), particularly as the time step is reduced and the grid is refined.
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6.2. External droplet and viscous air flow past iced conductor

In this problem, a 2-D external viscous flow is predicted in conjunction with a moving phase
interface arising from impinging supercooled droplets and ice accretion on a cable. The practical
importance of this problem is its application to icing of overhead power transmission lines. In
addition to predicting conditions leading to potential structural damage, such as excessive ice and
wind loads, or power line galloping, the current predictive model can be used as an effective design
tool in maintaining a reliable power supply during harsh weather conditions.
In the current problem, a combined air–droplet flow and ice accretion is predicted in conditions

with an initially bare (uniced) cable diameter of 2.86 cm, ambient air temperature of )8.2 �C,
incoming wind velocity of 13 m=s and precipitation rate of about 1:2� 10�3 mm=s (note: droplets
carried by wind horizontally at inflow boundary). In Fig. 5, a schematic of the external flow past
the cable and a sample domain discretization are illustrated. This problem is considered to be
representative of typical precipitation and air flow conditions leading to atmospheric icing of
overhead power lines, whereby rime (dry) ice accumulation is observed at sub-zero temperatures.

Fig. 4. Phase interface results with (a) time step and (b) mesh refinements.
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Under the present conditions, it is anticipated that the boundary layer remains laminar on the
upstream side of the cable and separation of the boundary layer occurs with turbulence in the
downstream wake. The detailed impact of turbulence was not examined since downstream flow
processes were viewed to have a minor effect on the main parameter of interest here (mass of ice
buildup on upstream side of cable). For nearly symmetrical iced cables, which typically arise
under rime ice conditions for a non-rotating conductor, experimental studies have revealed that
ice accretion occurs mainly on the upstream side where the boundary layer remains laminar,
despite the downstream turbulent wake. Nevertheless, a turbulent viscosity based on mixing
length theory was adopted. This approach used a turbulent viscosity in addition to the molecular
value in the mean flow momentum equations. It will be shown that this approach provided
reasonable agreement between the numerical predictions and corresponding experimental data in
terms of ice shape and mass.
In Figs. 6 and 7, the transient predictions of ice growth, ice shape and air velocity (depicted by

velocity vectors) are shown. The ice surface is represented by phase fraction contours at the
advancing interface as it grows into the wind. Since the non-air phase fraction (i.e., liquid droplets
and/or ice) is plotted, the contours essentially track the droplet trajectories, as well as the ice
accumulation on the cable surface. For example, at the inflow boundary, this phase fraction is
equivalent to the liquid water content. The scalar transport equation for this phase fraction is
solved, in conjunction with the droplet momentum and main (air) flow equations, to track the
droplet distribution through the flow field.
If the intervals between the phase fraction contour labels are sufficiently small (i.e., within the

range of the freestream’s liquid water content), then the results would actually depict the droplet

Fig. 5. (a) Schematic of 2-D droplet impingement problem with (b) sample mesh discretization.
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movement throughout the domain. However, this labelling would then be too fine to capture the
much larger (order of 1) phase fraction at the solid boundary as it represents the growing ice
interface. If it is desired, then the contour labelling could be specified within the liquid water range
of the freestream droplets, or surface liquid–ice, to examine the droplet flow or ice accretion,
respectively. In the former case, all relevant droplet dynamics, including deflection by the air
stream, collection efficiency at the cable surface (i.e., the surface’s ability to ‘capture’ droplets),
and impingement at the solid boundary, are simulated.
In the comparisons between computed results and experimental data, a dimensionless ice

thickness, d�, and dimensionless time, t�, will be used. These variables are defined as follows:

d� ¼ d
R
; ð41Þ

t� ¼ 2
qw

qi

Pt
pR

; ð42Þ

where t, P and R refer to time (from the start of the freezing precipitation), precipitation rate and
cable radius, respectively. The equivalent ice thickness, d, is defined as the uniformly radial ice
thickness having the same equivalent mass of ice as that observed.
In Fig. 6, the predicted ice profile is illustrated and compared with a measured ice shape ob-

tained at the same dimensionless time ðt� ¼ 0:788Þ. Although this represents a range of possible
wind velocities and liquid water contents yielding the same value of t� (but at different times), the
shape of ice is often mainly dependent on t� under dry (rime) ice conditions when droplets freeze
immediately upon impact without droplet splashing. Additional numerical simulations have
verified that close similarity of ice shapes is obtained at identical values of t� even though the wind
velocity and liquid water content are slightly different. It can be seen that fair agreement between
the predicted and experimental results is achieved in Fig. 6. The notable features of the predictions
include both side and frontal ice growth.
Although the frontal growth is well understood, the mechanisms responsible for accumulation

along side elements is less understood. It is anticipated that the component of the surface tangent
of the boundary element in the direction of the incoming precipitation is responsible for a portion
of the droplets captured by the surface. Furthermore, since the droplet mass is lumped within a
control volume (i.e., approximated by a single effective droplet mass smeared across the volume),
then a portion of the droplets passing by the side sections of the conductor is captured while the

Fig. 6. (a) Predicted and (b) measured results of ice shape ðt� ¼ 0:788Þ.
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remaining portion exits the control volume past the conductor. In any case, it appears that im-
portant physical processes involving droplet capturing have been modelled in the current work.
In Fig. 7(a), the ice accumulation is depicted after 6.0 h. Although the simulations are per-

formed on an unstructured finite element mesh, the velocity vectors are displayed at a uniform
spacing. Also, the circular conductor is approximated by straight-line segments, and these seg-
ments are enclosed within a shaded ‘pixel’ region. Furthermore, it should be noted that results
from the unstructured (finite element) mesh are interpolated onto the output graphs which use a

Fig. 7. Predicted results at (a) t ¼ 6 h and (b) t ¼ 12 h.
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structured (row and column) format. In Fig. 7(a), the velocity magnitudes are scaled in accor-
dance with a reference velocity. Also, dots in the flow field refer to small velocity magnitudes. In
the case of regions within the ice accretion, these dots correctly depict zero velocities, since the
non-zero phase fraction in the main (air) flow equations damps any resulting air velocities to zero
there.
An important part of the predictions involves the recirculating flow behind the iced cable.

Boundary layer separation and flow reversal are indicated by the left and/or down facing velocity
vectors near the downstream upper and lower cable regions, respectively. Shedding of vortices is
created in this downstream region and the width of the wake increases as ice growth occurs at the
top and bottom edges of the cable (i.e., there is an increasingly exposed area normal to the flow
direction). It should be noted that for rime ice with no cable rotation, the effect of downstream
flow structures (i.e., vortex motion, wake) on the main parameter of interest (mass of ice accre-
tion) seems minor. This minor effect can be observed since droplets adhere immediately upon
impact with no splashing and a high incoming air inertia implies that the droplet and air velocities
are not appreciably different.
Despite this anticipated small effect on the mass of ice, a slight asymmetry in the shape of ice is

observed. It may have occurred from the interactions between the droplets and the main (air)
flow’s asymmetry due to periodic shedding of upper and lower vortices along the downstream side
of the cable. It should be noted that there are two widely different time scales in this problem (i.e.,
large-scale for ice accretion; small-scale for downstream vortices). The time scale associated with
the ice accretion is selected in the time step since this phenomenon is the main focus in the present
work.
In Fig. 7(b) (t ¼ 12 h), even more ice accumulation is observed together with its effects on the

surrounding air–droplet flow. In these results, an important contribution of the present work is
achieved in that both side ice and frontal ice are predicted. Other studies have typically predicted
mainly frontal ice, which does not agree with this experimental data that shows side ice, and as a
result, the mass of ice would be underpredicted. Otherwise, other researchers have used empirical
geometrical factors (without coupling to the flow solution) to place mass at the side of the con-
ductor. But, models which correctly predict the mass of ice often overpredict the frontal ice in
compensation for not properly accounting for side ice. This problem arises when the moving ice
boundary problem is not implicitly coupled to the external multiphase flow solution. The current
work appears to reasonable predict this side ice growth based on the problem physics directly.
This side ice growth is predicted in conjunction with the viscous multiphase flow around the
conductor.
The actual ice interface is approximated by the 0.5 contour since this contour approximates the

midpoint between a filled control volume and a completely unfilled control volume (where unfilled
refers to ice). At subsequent times, the continued ice growth is predicted, together with its effects
on the flow patterns on both upstream and downstream sides of the conductor. In the simulations,
20 time steps were used to reach 12 h of actual (physical) time (note: smaller time steps were used
in the time step refinement studies) . Also, grid discretizations of 441 nodes (184 elements), 671
nodes (600 elements), 1104 nodes (1020 elements) and 2541 nodes (2400 elements) were used.
Solution convergence within each time step (1104 node mesh) was typically achieved within 20–30
s on a 500 MHz laptop computer. In view of the complexity of this three-phase problem (i.e., mass
and momentum equations for droplets and air flow, mass conservation with impinging droplets at
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ice surface, etc.), this computational effort indicates economical performance. As a result, it is
viewed to be a promising tool for problems involving multiphase flows.
Another aspect of validation is a comparison with experimental results involving change of

mass of ice accretion with respect to time. Previous studies (Lu et al., 1998) indicate that the ratio
of dimensionless ice thickness, d�, to time, t�, should remain constant at approximately one-half
(assuming an unheated, non-rotating conductor). This analytical prediction, as well as the ex-
perimental data and current computed results are depicted in Fig. 8. Favorable agreement is
observed between these results. The experimental data was obtained over a variety of atmospheric
conditions. Based on these favorable comparisons, it appears that the current models are capable
of reasonably predicting both ice weight and shape during freezing precipitation.
Additional results are shown in Fig. 9(a) and (b). Sensitivity studies for grid spacing and time

step refinements are shown in Fig. 9(a). In both cases, the dimensionless ice thickness to time ratio
is computed (at t ¼ 12 h) and compared with the analytic solution of Goodwin et al. (1982), which
agrees well with experimental data. The Courant number is defined as Co ¼ uDt=Dx along the
horizontal axis and u ¼ 13 m=s (incoming velocity) in this case. It can be observed that for both
the time step refinement (solid line; Co decreases as Dt decreases) and grid refinement (dashed line;
Co increases as Dx decreases), the results approach the analytic ratio of 0.5. It should be noted that
the grid spacing was defined as the average Dx in the upstream region between the leading edge of
the cable and the inflow boundary. Thus, the range shown in Fig. 9(a) actually depicts a wide
range of mesh discretizations between 441 and 2541 nodes.
In Fig. 9(b), the dimensionless ice thickness, d�, at t ¼ 12 h, is shown under different flow

conditions. In the first case, the incoming wind velocity is maintained constant (V ¼ 13 m=s), but
the liquid water content is varied to give a range of precipitation rates. In the second case, the
liquid water content is maintained constant ðG ¼ 0:065 g=m3Þ and the wind velocity is varied
independently (results plotted with square data markers). It can be observed that the ice thickness
increases nearly linearly with precipitation rate. It can be shown that the results in Fig. 9(b) also

Fig. 8. Predicted and measured results of ice mass.
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agree closely with the experimental range of ice buildup (rime ice conditions) of d� 
 t�=2. For
example, d� 
 0:48t� for the leftmost data point shown in Fig. 9(b). These results illustrate the
simulation capabilities of the present formulation over a fairly wide range of flow conditions.

7. Conclusions

Multiphase flows with droplets in three-phase conditions (air, droplets and ice) have been
examined in the present paper. The Navier–Stokes equations and equations of droplet motion are
discretized with a CVFEM to predict the main (air) flow and droplet velocities. Interactions
between the droplet and air flows appear through appropriate inter-phase correlations in the
momentum equations. The spatial distribution of droplets throughout the domain is predicted by
a scalar transport equation involving phase fraction. It is anticipated that this Eulerian approach
provides an effective alternative to Lagrangian tracking of individual droplet trajectories. Phase
change of impinging droplets, together with their solidification and effects on boundary layer

Fig. 9. (a) Grid and time step refinement and (b) other flow conditions.
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separation in the surrounding viscous flow, are presented and discussed. Based on favorable
comparisons between experimental data and the numerical predictions, it is viewed that the
current formulation provides an effective design tool for problems involving multiphase flow with
droplets and ice accretion.
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